RESPIRATORY CARE ROTATION: GOALS AND OBJECTIVES

I. EDUCATIONAL PURPOSE AND GOALS
The educational objective of the Respiratory Care rotation is to provide the trainee with meaningful exposure to techniques and equipment used in management of respiratory illness. This includes but is not limited to supplemental oxygen delivery devices, reservoir masks, continuous positive-pressure breathing, bi-level positive pressure breathing and various modes of mechanical ventilation. In addition, the trainee is provided exposure to administrative principles of running a Respiratory Care Department.

The critical care and/or pulmonary critical care subspecialty resident is provided a respiratory care syllabus and lecture series covering basic respiratory care information. Monday through Friday the subspecialty resident attends rounds in the intensive care unit then meets after rounds with members of the respiratory care department.

The subspecialty resident on the Respiratory Care rotation also attends all critical care conferences, and administrative meetings.

The subspecialty resident on the Respiratory Care rotation participates approximately one night per week on the Night Float rotation where teaching methods and associated goals apply.

II. TEACHING METHODS WITH ASSOCIATED GOALS
An educational program for subspecialty resident on the Respiratory Care rotation is based around the core competencies (Medical Knowledge – MK, Patient Care – PC, Interpersonal and Communication Skills – CS, Professionalism – PR, Practice Based Learning and Improvement – PBL&I, System Based Practice – SBP). The activities associated with specific learning exercises are delineated in parentheses:

A. The subspecialty residents on this rotation rounds daily with respiratory care clinicians in the respiratory care department and the intensive care units. The subspecialty resident learns that optimal patient care requires appropriate leadership, medical knowledge, accurate bedside decision making, and efficient implementation of care plans, multidisciplinary expertise and good communication. (MK, PC, SBP, CS, PR)

B. Night Float / Integration into a System of Care
The primary care team sets the plan for the day and signs out instruction to the night float residents. The night float resident team consists of one subspecialty resident and one resident. This team admits new patients, provides emergency care as needed, and titrates the management plan formulated on daily rounds by the primary care team. An overlapping period of time each evening allows the night float resident team to transition and assume nighttime coverage responsibility. The night float experience places each resident and subspecialty resident in a leadership position. The night float team is supervised by onsite critical care attending physicians both at the bedside and in the eICU. All critical care attending physicians take "home call" every night to insure appropriate night float resident team backup. This system insures that the night float resident team has immediate backup by an attending physician familiar with the patient. An overlapping period of time each morning allows the night float resident team to transition care of new patients to the primary care teams and to discuss any changes that may have occurred to patients during the previous night. Residents and
subspecialty residents learn that the ICU provides the patient 24 hour/day care in the context of a well structured, time refined system that requires all component participants to understand their roles to optimize system function and, therefore, patient care. (MK, PC, CS, SBP, PR)

C. Critical care core curriculum lecture series.
Didactic education in the diagnosis and management of common acute life threatening organ failure. (MK, PC)

D. Critical care core reading list. Essential readings to compliment lectures and patient care. (MK, PC)

E. Critical care grand rounds (Weekly).
Guest speakers, critical care faculty and subspecialty residents lecture on important critical care topics. (MK, PC)

F. Patient care conference
Difficult cases discussed by multiple attending physicians with emphasis on communication issues, ethical issues, ICU administration issues and alternative therapeutic approaches (PC, PBL&I, SBP)

G. Journal club/literature review Twice per month; subspecialty residents critically analyze recently published articles on critical care topics (PBL&I)

H. Supervised critical care procedures.
Bedside instruction in critical care procedures including; airway management, tracheal intubation, central venous catheter insertion, arterial cannulation, thoracostomy tube insertion and maintenance, pulmonary artery catheter insertion, maintenance and interpretation, percutaneous tracheostomy, fiberoptic bronchoscopy, thoracentesis, paracentesis, lumbar puncture (MK, PC)

I. Clinical Research Programs
All residents are instructed in the clinical protocols currently active and are expected to recognize when their patients are candidates for inclusion and notify appropriate personnel. (PBL&I, PR)

III. SPECIFIC EDUCATIONAL CONTENT
Four resident teams are assigned patients on a rotational basis as they are admitted to the Critical Care Units. The case mix includes patients with medical, surgical, traumatic and neurological diseases with a severity of illness that has rendered the patient physiologically unstable or in need of close observation to assure an optimal outcome. As a consequence the resident experiences a high volume of patients with single organ and multiple organ failure. Resident physicians provide 24 hour day coverage (night call every four days) within the Critical Care Units and have in-house supervision 12 hours a day by Critical Care faculty. In addition there is 24 hour a day in-house Critical Care subspecialty resident backup for all resident trainees. Residents on the Critical Care rotation are responsible for all patient care and no other house staff is permitted to write orders on ICU patients. Residents on rotation perform all invasive procedures (with or without supervision) as appropriate for their level of training.

Specific areas of instruction include but are not limited to:
A. Decision analysis in the care critically ill
B. Principles of resuscitation
C. Instruction on bedside monitoring and bioengineering techniques including specific principles related to respiratory, hemodynamic and neurologic monitoring. This includes instruction on calibration, zeroing and trouble shooting of commonly used pressure monitoring systems, transducers, amplifiers and recorders.
D. Instruction regarding indications, contraindications, complications, limitations, performance and understanding of common critical care/ICU procedures and use of ICU equipment including:
 1. Establishment and maintenance of open airway in non-intubated, unconscious, and paralyzed patients
 2. Use of all common forms of mechanical ventilation including pressure-cycled, volume-cycled, time-cycled, and flow-cycled modalities
 3. Use of common respiratory equipment including supplemental oxygen cannulae, reservoir masks, continuous positive-pressure masks, humidifiers, and incentive spirometers
 4. Instruction and practice of elective and emergency airway management techniques including rapid sequence intubation techniques
 5. Instruction and practice in the techniques of conscious sedation
 6. Emergency management of pneumothorax including needle decompression, insertion of thoracostomy tubes and proper use of thoracostomy tube drainage systems
 7. Arterial puncture and blood sampling techniques
 8. Insertion of central venous, arterial and pulmonary artery balloon floatation catheters.
 9. Basic and advanced cardiopulmonary resuscitation
 10. Electrical cardioversion
 11. Performance of thoracentesis and diagnostic evaluation of pleural fluid
 12. Performance of percutaneous tracheostomy
 13. Performance of fiberoptic bronchoscopy

E. Instruction on indications, contraindications, complications, limitations, and understanding of common critical care/ICU procedures and use of equipment including:
 1. Pericardiocentesis
 2. Transvenous pacemaker insertion
 3. Peritoneal dialysis
 4. Peritoneal lavage
 5. Intracranial pressure monitoring

F. Instruction and experience is provided for the following:
 1. Hemodynamic and respiratory monitoring including cardiac output determinations (thermodilution and other techniques), understanding of airway pressure, volume and flow characteristics and calculation of oxygen content, intrapulmonary shunt, alveolar-arterial gradients
 2. Evaluation of oliguria
 3. Massive transfusion, indications, management and complications
 4. Diagnosis and management of coagulation disorders
 5. Interpretation of antimicrobial sensitivity patterns
 6. Interpretation of antimicrobial blood levels
 7. Assessment and monitoring of nutritional status
G. Opportunities to learn ICU organization and administration are provided in the follow venues:

1. Daily rounds whereby the attending physician acts as a role model and teaches "on the job" communication skills necessary to function as an effective member of a multidisciplinary team.
2. Attendance by critical care attending and subspecialty resident at the monthly ICU Administrative meeting.
3. Attendance by critical care attending physician and subspecialty resident at the monthly Quality Improvement committee meetings.
4. Attendance by the subspecialty resident of at the institutional IRB meetings.
5. Attendance by the subspecialty resident at the bi-monthly subspecialty resident "concerns" meetings.
6. Attendance by the subspecialty residents at the institutional occupational safety and health administration (OSHA) conferences.

H. Formal instruction is provided in the following areas:

- Physiology, pathophysiology, diagnosis and therapy regarding:
 1. cardiovascular system
 2. respiratory system
 3. renal system
 4. gastrointestinal system
 5. genitourinary system
 6. neurologic system
 7. endocrine system
 8. hematologic system
 9. musculoskeletal system
 10. immune system
 11. infectious diseases
 12. electrolyte and acid-base physiology, diagnosis and therapy
 13. metabolic, nutritional, and endocrine effects of critical illness
 14. hematologic and coagulation disorders associated with critical illness
 15. care of critical obstetric and gynecological disorders
 16. management of the immunosuppressed patient
 17. management of acute allergic reactions including anaphylaxis
 18. management of the trauma patient
 19. pharmacokinetics, pharmacodynamics, drug metabolism and excretion
 20. use of neuromuscular blocking agents in critical care
 21. ethical, legal, and economic aspects of critical care
 22. principles of ICU administration and management
 23. psychosocial and emotional effects of critical illness on patients and their families
 24. issues related to infection control and nosocomial infections in critical care
 25. issues related to complications in critically ill patients
IV. **ANCILLARY EDUCATIONAL MATERIALS TO BE USED**
Internet enabled computers are available throughout the medical center. These provide around-the-clock access to Med Line searches, pharmacology databases and other useful reference material (e.g. Ovid, Up-To-Date, Harrison’s Textbook of Medicine On-Line)

V. **METHODS USED IN EVALUATING RESIDENT PERFORMANCE**
The subspecialty resident on the Respiratory Care rotation is taught and supervised by senior respiratory care providers. The senior respiratory care provider is expected to give regular verbal formative evaluations to the subspecialty resident as a guide for ongoing improvement. Subspecialty residents receive summative rotation evaluations by senior respiratory care providers at the end of the rotation. A healthcare team evaluation including self-evaluation is also completed at the end of the rotation.

Reviewed and approved by the Curriculum Committee July, 2009